If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2+10j+16=0
a = 1; b = 10; c = +16;
Δ = b2-4ac
Δ = 102-4·1·16
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6}{2*1}=\frac{-16}{2} =-8 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6}{2*1}=\frac{-4}{2} =-2 $
| n5=327641 | | 16w-10=-7w+14-1 | | 72=82w | | g^2+12g+11=0 | | 5n=3124 | | 72=2w+80 | | -5b-9=-4b | | 6(3p+1)-4=9(3p-2)+11 | | 15-19s=-s-15-16s | | 74=2y+34 | | 11+14f=-19+16f | | 4€=w-6€ | | 55=x+70 | | 7x-2=17 | | 6m-7=-m+5+5m | | 123456777788899990-f=1234567890000000000000012345 | | -10p+2=-8p+4 | | (4/x)+(6/(x+8))=8 | | 4x-(9-3x)=-8x-1 | | 9m-3(m+5)=13 | | s-10=8+3s | | 16=8+c | | -10b=-9b+7 | | -20+4r=16 | | 4x+-10=22 | | 14=z/3 | | -1.6r+5=-7.8. | | k-9=5-k | | p+11.3=32.6 | | -2x+12-10x=18 | | -8=6+35x | | -e=3e+8 |